Biomolecules

 All organisms are made out of four types of biomolecules, what are they?

4 Biomolecules

- 1. Carbohydrates
- 2. Proteins
- 3. Lipids
- 4. Nucleic Acids

Photosynthesis

 Plants break the H₂O and CO₂ to make new molecules.

• $6 H_2O + 6 CO_2$ get rearranged into $C_6H_{12}O_6 + 6 O_2$

• If plants perform photosynthesis to make the carbohydrate glucose, then where does the other biomolecules come from?

Make New Biomolecules

- Plants and animals can make new molecules by rearranging the C, H, O atoms in glucose.
- For example, if you take many glucose molecules, you can make a lipid molecule (triglyceride = fat).

Carbohydrate (Glucose)

Lipid (Triglyceride)

(Glucose)

 How can a carbohydrate make a protein, when the protein has a new atom like nitrogen?

(amino acid)

Minerals - Nitrogen

 An important mineral an organism needs is nitrate (contains nitrogen atom).

• Nitrates are an important part of fertilizer for plants.

 How can a carbohydrate make a nucleic acid (DNA) molecule, when DNA has a new atom like phosphorus?

Carbohydrate (Glucose)

Nucleic Acid (DNA)

Minerals - Phosphorus

 Another important mineral a organism needs is phosphate (contain phosphorus atom).

• Phosphates are an important part of fertilizer for plants.

Change Biomolecules

- One biomolecule, like carbohydrates, can be used to make another biomolecule.
- This is done by using the carbon, hydrogen, and oxygen (CHO) atoms in carbohydrates and rearranging those atoms to form a new biomolecule.

Carbohydrate (Glucose)

Lipid (Triglyceride)

Building Block Molecules

- Larger macromolecules called polymers are made out of smaller molecules called monomers.
- Notice the monomers are repeating in the diagram below.

Building Polymers (Dehydration Synthesis)

• For example, if you combine two simple sugar monomers, you can make a larger polymer.

Breaking Polymers (Hydrolysis)

- The chemical reaction can go in the opposite direction.
- You can break a larger polymer into their monomers.

Monomers and Polymers

Macromolecule	Monomer	Polymer
Carbohydrate	Monosaccharide (glucose)	Polysaccharide (starch)
Protein	Amino acid	Protein (enzymes)
Lipid	Fatty Acids	Fats, Oils, Membranes (phospholipids, triglycerides)
Nucleic Acids	Nucleotide	DNA or RNA

You Are What You Eat

 The macromolecules in your food break down (digestion) into monomers and your body will use those monomers to make new macromolecules.

Metabolism

- Metabolism is just a chemical reaction in the cell, like:
 - Photosynthesis
 - Cellular Respiration
 - Making Polymers (dehydration synthesis)
 - Breaking Polymers (hydrolysis)

- These chemical reactions are helped by enzymes.
 - Enzymes help to perform metabolism by reducing the amount of energy needed to start the chemical reaction.